69 research outputs found

    An ANOVA approach for statistical comparisons of brain networks

    Get PDF
    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.Fil: Fraiman Borrazás, Daniel Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Fraiman, Jacob Ricardo. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; Urugua

    Bak-Sneppen model: Local equilibrium and critical value

    Get PDF
    The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.Fil: Fraiman Borrazás, Daniel Edmundo. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentin

    The brain: What is critical about it?

    Get PDF
    We review the recent proposal that the most fascinating brain properties are related to the fact that it always stays close to a second order phase transition. In such conditions, the collective of neuronal groups can reliably generate robust and flexible behavior, because it is known that at the critical point there is the largest abundance of metastable states to choose from. Here we review the motivation, arguments and recent results, as well as further implications of this view of the functioning brain.Comment: Proceedings of BIOCOMP2007 - Collective Dynamics: Topics on Competition and Cooperation in the Biosciences. Vietri sul Mare, Italy (2007
    • …
    corecore